Imaging Alfalfa to Predict Yield & Quality & Impacts of Water Deficits Using Innovative Overhead Imigation Systems

Umair Gull^{1,2}, Isaya Kisekka^{3,4}, Sean Hogan⁵, Zhehan Tang³, Travis Parker¹, Alireza Pourreza⁴, Jonathan Misael Cisneros¹ and Daniel H. Putnam¹

¹Department of Plant Sciences, University of California, Davis, CA, USA

²Department of Agronomy, University of Agriculture, Faisalabad, Punjab, Pakistan

³Department of Land, Air, and Water Resources, University of California, Davis, CA, USA

⁴Department of Biological and Agricultural Engineering, University of California, Davis, CA, USA

⁵University of California Division of Agriculture and Natural Resources, Davis, CA, USA

August 31, 2021 Exit Seminar GGHA by Umair Gull

Context:

- Severe challenges:
 - 'Exceptional' Drought –water supply limits
 - Competition for Water (crops, environment)
 - Water Transfers to other users
 - Long term coping with deficits
- Strategies to Cope:
 - 'Triage' (leaving old fields behind)
 - Abandoned fields
 - Deficit Irrigation
 - Technology Improvements

Current Situation (June 2, 2022)

Irrigated Alfalfa

Percent US Alfalfa impacted by drought

>50% of Hay acres (US),
spring/summer of 2022
(NDMC, and ERS). (April, 2022)

Response to Water Limits in Irrigated Alfalfa:

- Need for Innovative techniques to improve water-application efficiency (Overhead Systems, Pivots, Linears, Subsurface Drip, Automated Surface Systems)
- LESA/LEPA (Low Elevation, Low Pressure, Low losses)- nozzling systems & close spacings.
- Deficit Irrigation (How to do partial season applications when not enough water).
- Imaging/Monitoring. Effects of drought and deficits on yields. Estimating ET and yield impacts remotely.
- Water transfers to other users (credits to farmers)

Objectives:

- Yield response to deficits
- Develop an image to yield relationship using multispectral and LiDAR imagery for alfalfa
- Create a yield and quality map for understanding spatial temporal variability
- Identify the best models to estimate alfalfa yield and quality

Crop Imaging:

- Analysis of Yield Limitations in fields (field diagnostic tool) to understand the variability in yield due to abiotic stresses.
- Less labor involved as compared with traditional sampling methods.
- The results may be provided in short time for field management

Source: Chandel et al., 2021, Dvorak et al., 2021, Tang et al., 2021

Material and Methods: (Year 2019 and 2020)

A-LESA/LEPA **B-LESA/LEPA** D-MDI **C-MDI**

Source: Gull et. al., 2021

1 UCDAVIS

2022 NAAIC Meetings, Lansing, MI

Davis Alfalfa Overhead Irrigation Experiment 2019-2020 Plot Layout Chapter 2:

Advantages and Disadvantages

Monitoring Soil Water Status

Yield Response to Deficits:

Imaging Material and Methods:

Table 1. Image acquisition details using Micasense Rededge and LiDAR in alfalfa during 2020

Harvest Date	Flight Date	Sensor Used	
23-Apr-20			
28-May-20	26-May-20	Micasense Rededge	
	27-May-20	LiDAR	
25-Jun-20	24-Jun-20	Micasense Rededge	
23-Jul-20	22-Jul-20	Micasense Rededge	
	21-Jul-20	Lidar	
20-Aug-20	19-Aug-20	Micasense Rededge	
17-Sep-20	16-Sep-20	Micasense Rededge	
	16-Sep-20	LiDAR	
22-Oct-20	20-Oct-20	Micasense Rededge	
	20-Oct-20	LiDAR	
		Source: Gull et. al., 2021	

Source: MicaSense

Multispectral Processing Steps:

LiDAR Height

Source: Gull et. al., 2021

Figure 1. An illustration of observed data collected from 0.09 m² (blue square), 11.15 m² (orange rectangle) and estimated whole plot 334.45 m² (green rectangle).

Source: Gull et. al., 2021

Table 2. Vegetation indices used in the present study were adopted from Tang et al., 2021 for developing the model.

Source: Gull et. al., 2021

Indices	Abbreviation	Formula
Chlorophyll Index of Green	ClGreen	(NIR-Green)/(Green)
Chlorophyll Index of Red Edge	ClRe	NIR-RedEdge/RedEdge
Chlorophyll Vegetation Index	CVI	(NIR*Red)/(Green*Green)
Enhanced Vegetation Index	EVI2	2.5*(NIR-Red)/(NIR+(6*Red)-(7.5*Blue)+1)
Excess Green	ExG	2*Green-Red-Blue
Green Leaf Index	GLI	(2*Green-Red-Blue)/(2*Green+Red+Blue)
Green Normalized Difference Vegetation Index	GNDVI	(NIR-Green)/(NIR+Green)
Green Red Blue Vegetation Index	GRBVI	((Green ²)-(Blue*Red))/((Green ²)+(Blue*Red))
Green Ratio Vegetation Index	GRVI	NIR/Green
Leaf Chlorophyll Index	LCI	(NIR-RedEdge)/(NIR-Red)
Modified Chlorophyll Absorption in Reflectance Index	MCARI	((RedEdge-Red)-0.2*(RedEdge-Green))*(RedEdge/Red)
Normalized Difference Red Edge Index	NDRE	(NIR-RedEdge)/NIR+RedEdge)
Normalized Difference of Vegetation Index	NDVI	(NIR-Red)/(NIR+Red)
Normalized Green-Red Difference Index	NGRDI	((Green-Red))/((Green+Red))
Ratio Vegetation Index	RVI	(Red/NIR)
Simple Ratio	SR	(NIR/Red)
Triangular Vegetation Index	TVI	60*(NIR-Red)-100*(Red-Green)
Visible Atmospherically Resistant Index	VARI	(Green-Red)/(Green+Red-Blue)
Wide Dynamic Range Vegetation Index	WDRVI	(0.1*NIR-Red)/(0.1*NIR+Red)
Predicted Plant Height	PH	Relationship between Observed and UAV

Statistical Analysis:

- Mostly conducted in R with following packages
- Caret (Kuhn, 2021), raster (Hijmans, 2020),
- sf (Pebesma, 2018), rgdal (Bivand et al., 2021), Hmisc (Harrell Jr et al., 2021).
- HydroGOF (Bigiarini, 2020),
- Corrplot (Wei and Simko, 2017).
- Ggplot (Wickham, 2016).

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} (Predicted - Observed)^{2}}{n}}$$
$$MAE = \frac{\sum_{i=1}^{n} |Predicted - Observed|}{n}$$
$$nRMSE = \frac{RMSE}{sd(observed)}$$
Source: Gull et. al.,

Plant Height

• Multispectral

UCDAVIS

2022 NAAIC Meetings, Lansing, MI

UCDAVIS.

Predicted vs. Observed DMY 2020

• Multispectral

- 2. May
- 3. June
- 4. July
- 5. August
- 6. September
- 7. October

Predict Machine Harvest Area= 4 ft × 30 ft n= 190

Source: Gull et. al., 2021

Multispectral

Irrigation Amount under LESA & MDI

Results and Discussion:

• Lidar

Model Area= 1 ft × 1 ft n= 252

2022 NAAIC Meetings, Lansing, MI

29 Days

8

• Lidar

Harvests

- 2. May
- 4. July
- 6. September
- 7. October

Source: Gull et. al., 2021

UCDAVIS

LiDAR Predicted vs. Observed DMY 2020

• Lidar

Irrigation Amount under LESA & MDI

Davis Alfalfa Soil Water Content

Importance of Early Irrigation:

60 Feet

30

Forage Quality

Multispectral

Source: Gull et. al., 2021

Conclusions:

- Both LEPA/LESA sprinklers and Mobile Drip Systems have the capability of improving WUE of alfalfa. MDI Improved subsoil infiltration.
- Deficits targeting 40% of ETc resulted in yields 78-80% of full irrigation.
- Both multispectral cameras and LiDAR have the capability of spatially predicting alfalfa yield.
- Less accuracy in prediction of quality.
- Vigorous tested equations could predict yield effects over larger areas, taking into account sources of field variation
 - Traffic effects
 - Soil Variation
 - Imprecise irrigation techniques
 - Pest Impacts
- Utility: diagnosing problems, more vigorous yield evaluations of varieties in larger areas

Acknowledgments:

California Department of Water Resources

United States Department of Agriculture National Institute of Food and Agriculture

UCDAVIS

DEPARTMENT OF PLANT SCIENCES

College of Agricultural and Environmental Sciences

Literature Cited:

- Chandel, A.K., Khot, L.R., Yu, L.-X., 2021. Alfalfa (Medicago sativa L.) crop vigor and yield characterization using high-resolution aerial multispectral and thermal
 infrared imaging technique. Computers and Electronics in Agriculture 182, 105999. <u>https://doi.org/10.1016/j.compag.2021.105999</u>
- Dvorak, J.S., Pampolini, L.F., Jackson, J.J., Seyyedhasani, H., Sama, M.P., Goff, B., 2021. Predicting Quality and Yield of Growing Alfalfa from a UAV. Transactions of the ASABE 64, 63–72. <u>https://doi.org/10.13031/trans.13769</u>
- Bigiarini, M.Z., 2020. hydroGOF: Goodness-of-fit functions for comparison of simulated and observed hydrological time series package version 0.4-0. https://github.com/hzambran/hydroGOF. DOI:10.5281/zenodo.839854.
- Bivand, R., Keitt, T., Rowlingson, B., 2021. rgdal: Bindings for the "Geospatial" Data Abstraction Library. R package version 1.5-23. https://CRAN.R-project.org/package=rgdal.
- Ewald, M.J., 2013. Where's the Ground Surface? Elevation Bias in LIDAR-derived Digital Elevation Models Due to Dense Vegetation in Oregon Tidal Marshes 114.
- Gull, U. 2021. Sustaining Alfalfa Forage Production with Limited Water Resources. PhD Dissertation. December 2021. University of California, Davis.
- Harrell Jr, F.E., Dupont, C., others, 2021. Hmisc: Harrell Miscellaneous. R package version 4.5-0. https://CRAN.R-project.org/package=Hmisc.
- Hijmans, R.J., 2020. raster: Geographic Data Analysis and Modeling. R package version 3.4-5. https://CRAN.R-project.org/package=raster.
- Kassambara, A., 2020. ggpubr: "ggplot2" Based Publication Ready Plots. R package version 0.4.0. https://CRAN.R-project.org/package=ggpubr.
- Kuhn, M., 2021. caret: Classification and Regression Training. R package version 6.0-88. https://CRAN.R-project.org/package=caret.
- Pebesma, E., 2018. Simple Features for R: Standardized Support for Spatial Vector Data. The R Journal 10 (1), 439-446, https://doi.org/10.32614/RJ-2018-009.
- Tang, Z., Parajuli, A., Chen, C.J., Hu, Y., Revolinski, S., Medina, C.A., Lin, S., Zhang, Z., Yu, L.-X., 2021. Validation of UAV-based alfalfa biomass predictability using photogrammetry with fully automatic plot segmentation. Sci Rep 11, 3336. https://doi.org/10.1038/s41598-021-82797-x
- Wei, T., Simko, V., 2017. R package "corrplot": Visualization of a Correlation Matrix (Version 0.84). Available from https://github.com/taiyun/corrplot.
- Wickham, H., 2016. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.

